

GN-231

100569

III Semester B.A./B.Sc. Examination, December - 2019 (CBCS) (Semester Scheme) (F+R) (2015-16 and Onwards)

MATHEMATICS - III

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions.

5x2=10

- 1. (a) Write the order of the elements of the group (Z_4, t_4) .
 - (b) Find all right cosets of the subgroup $\{0, 3\}$ in (Z_6, t_6) .
 - (c) Show that the sequence $\left\{\frac{1}{n}\right\}$ is monotonically decreasing sequence.
 - (d) State Cauchy's root test for convergence.
 - (e) Test the convergence of the series:

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots \infty$$

- (f) Evaluate $\lim_{x\to\infty} x.\sin\left(\frac{1}{x}\right)$.
- (g) State Cauchy's mean value theorem.
- (h) Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

PART - B

Answer one full question.

1x15=15

- 2. (a) If a and b are any two arbitrary elements of a group G, then prove that $O(a) = O(b^{-1}ab)$.
 - (b) If G is a group of fourth roots of unity and H is a subgroup of G, where $H=\{1, -1\}$ then write all cosets of H in G. Verify Lagrange's theorem.
 - (c) State and prove Fermat's theorem in groups.

OR

- 3. (a) If a is a generator of a cyclic group G then prove that a⁻¹ is also a generator.
 - (b) In a group G, if O(a) = n, $\forall a \in G$, d = (n, m), then prove that $O(a^m) = \frac{n}{d}$.
 - (c) If G is a finite group and H is a subgroup of G then prove that order of H divides the order of G.

P.T.O.

2

PART - C

2x15=30

Answer two full questions.

- 4. (a) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, prove that $\lim_{n\to\infty} a_n \cdot b_n = ab$.
 - (b) Discuss the nature of the sequence $\{n \mid n \}$
 - (c) Test the convergence of(i) n[log(n+1)-logn]
 - (ii) 1+cosn=

OR

- (a) Prove that a monotonic decreasing sequence which is bounded below is convergent.
 - (b) Show that the sequence $\{a_n\}$ defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2}a_n$ converges to 2.
 - (c) Examine the convergence of the sequence:

(i)
$$\left\{\frac{1+(-1)^n n}{(n+1)}\right\}$$

(ii)
$$(2n+3)\sin\left(\frac{\pi}{n}\right)$$

- 6. (a) Discuss the nature of the geometric series $\sum_{n=0}^{\infty} x^n$
 - (b) Test the convergence of the series:

$$1 + \frac{1}{2} + \frac{1 \cdot 3}{2 \cdot 4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} + \dots$$

(c) Sum the series to infinity

$$\frac{1}{7} - \frac{1 \cdot 4}{7 \cdot 14} + \frac{1 \cdot 4 \cdot 7}{7 \cdot 14 \cdot 21} - + \dots$$

OR

- (a) State and prove Raabe's test for the convergence of series of positive terms.
 - (b) Discuss the Leibnitz test on alternating series $\sum (-1)^{n-1}a_n$
 - (c) Sum the series to infinity $\sum_{n=1}^{\infty} \frac{(n+1)(2n+1)}{(n+2)!}$

PART - D

Answer one full question.

1x15=15

- 8. (a) State and prove Lagrange's mean value theorem.
 - (b) Test the differentiability of $f(x) = \begin{cases} 1-3x, & x \le 1 \\ x-3, & x > 1 \end{cases}$ at x = 1.
 - (c) Expand $\log_e(1+\cos x)$ upto the term containing x^4 by using Maclaurin's series.

OR

- **9.** (a) Prove that a function which is continuous in closed interval takes every value between its bounds at least once.
 - (b) Expand $\sin x$ in powers of $\left(x \frac{\pi}{2}\right)$ by using Taylor's series expansion. Hence find the value of $\sin 91^\circ$ correct to 4 decimal places.
 - (c) Evaluate: (i) $\lim_{x \to \frac{\pi}{2}} \frac{\log(\sin x)}{\left(\frac{\pi}{2} x\right)^2}$
 - (ii) $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{1/x}$